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FIIM BOIILNG HEAT TRANSFER FROM A HORIZONTAL SURFACE AS AN OPTIMAL BOUNIYLRY VAWE PROCESS 

by Thomas D. H a m i l l  and Kenneth J. Baumeister 

Lewis Research Center 
National Aeronautics and Space Administration 

C l e v e h d ,  Ohio 

ABSTRACT 

A theoret ical  analysis of pool f i lm boiling based on a ce l lu l a r  model is presented. The time-averaged 
c e l l  configuration is  postulated t o  adjust i t s e l f  t o  maximize the  rate of heat transfer. Theoretical ex- 
pressions f o r  the heat-transfer coefficient,  average vapor dome (bubble) radius, and optimum c e l l  diameter 
(wavelength) were i n  close agreement w i t h  experiments. 
tentat ive nonequilibrium thermodynamic hypothesis is proposed that nature maximizes the entropy production 
i n  a l l  s i tuat ions characterized by macroscopic chaos. 

As a generalization of this work and others, a 

AUSZU: 

0 m 
rl 
M wird gegeben. 
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Eine theoretische Analyse einer siedenden Oberflgche auf der Grundlage eines zellenertigen Modells 
Die zeitgemittelte Zellenkonfiguration s t e l l t  s ich voraussetzungsgem&s so e i n  dass s i e  die  

Geschwindigkeit d e r  W'heGbertragung maximiert. 
Dampfdomradius (Blase) und den optimalen Zellendurchmesser stimmte sehr nahe m i t  Versuchen Gberein. 
eine Verallgemeinemmg dieser Arbeit PJla hnderer wird eine v o r l h f i g e  ausgleichslose thermodpamische 
Hypothese vorgebracht, n%lich dass die Natur die Erzeugung der Entropie i n  a l len durch makroskopisches 
Chaos charakterisierten UmstLden maxirniert. 

Ein theoretischer Ausdruck fiir die  Wkneleitzahl,  den 
Als 

_ .  
xaoca. 

INTRODWTION 

Film-boiling heat t r ans fe r  i n  pool systems is 
a subject of considerable interest ,  especially in 
the f i e l d  of cryogenics, since relat ively low w a l l  
temperatures w i l l  induce fi lm boiling. A layer  of 
dense f l u i d  supported by a l i gh te r  one, f o r  film 
boi l ing of l iquid above vapor, i s  known to  be an 
inherently unstable configuration i n  a gravita- 
t i ona l  f ie ld .  A t  cer ta in  locations on the vapor- 
l i qu id  interface,  vapor w i l l  break through and es- 
cape *=.7er t h e  infliinnce of gravity i n t o  t h e  bulk 
l iquid.  
these escape points a r e  dome shaped and look l ike 
l a rge  bubbles and the surface is  covered by a 
cell-type structure.  

Figure 1 i l l u s t r a t e s  the two-dimensional 
model used i n  the  analysis. The m o d e l  consists of 
a th in  f i l m  of vapor between the w a l l  and the  sup- 
ported l i qu id  with the  vapor domes distributed sym- 
metrically over the surface of the plate.  This 
model i s  similar t o  t h a t  used by Berenson [11;l 
however, the analysis used i n  t h i s  paper is dif- 
f e ren t  from tha t  used by Berenson i n  that  no re- 
course is made t o  experimental r e su l t s  or t o  one- 
dimensional s m a l l  amplitude s t a b i l i t y  theory. 

t h a t  heat t ransfer  is the  dominating or driving 
force for both the  flow and the  in s t ab i l i t i e s ;  t h a t  
is, the time-averaged configuration of the liquid- 
vapor interface is  determined by thermal energy 
considerations. 

Photographs of fi lm boiling show t h a t  

The present paper takes the point of view 

%umbers i n  brackets denote references. 

BASIC MODEL AND ECUATIONS 

The major portion of the heat transport  t o  a 
uni t  c e l l  (see Fig. 1) is  assumed t o  occur across 
the  th in  vapor f i l m .  The vapor domes are  consid- 
ered so thick t h a t  essent ia l ly  no heat i s  conducted 
in to  them. Physically, t h e i r  function is  t o  ac t  as 
hydrodynamic sinks i n t o  which the generated vapor 
is dumped. The assumed symmetrical dis t r ibut ion of 
these sinks implies t h a t  the velocity f i e l d  i n  t he  
th in  f i l m  is radial ly  symmetric. 
posed assumes that there  i s  some time-averaged o r  
ensemble-averaged conrlguration of the sys ten i ,  
where all velocity, pressure, and temperature 
f i e l d s  are at steady state and that this statisti- 
cal ly  idealized configuration represents t he  aver- 
age behavior of the actual  system. 

The heat-transfer coefficient can be obtained 
by solving the  momentum and thermal energy equa- 
t i ons  f o r  flow and heat transport  i n  the th in  annu- 
lar vapor f i l m  belonging t o  a single cell .  I n  or- 
der t o  solve the momentum equations the iner t ia  
terms i n  t he  Navler-Stokes equation are considered 
negligible. This assumption can be ju s t i f i ed  on 
the grounds t h a t  the small thickness of the  film 
prevents the buildup of sizeable velocit ies.  Addi- 
t i ona l  support i s  given t o  t h i s  assumption by 
noting i n  [2 and 31, which consider the Leiden- 
f r o s t  f i l m  boil ing of drops, t ha t  the difference 
between the solutions obtained by retaining the 
i n e r t i a  terms and by dropping them is  shown t o  be 
negligible. I n  addition, the physical properties 
are  assumed constant (but evaluated at the  fi lm 

The model pro- 
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temperature); radiation and radial temperature 
gradients in the energy relations are assumed neg- 
ligible. 

For the assumptions noted, the governing dif- 
ferential equations in cylindrical coordinates are 
as follows: 

Mmentum: 

Continuity: 

Energy: 

(4) 

The attendant boundary conditions are as fol-  
lows : 

(a) At the wall, z = 0. 
vapor is zero: 

The velocity of the 

u(r,o) = w(r,O) = 0 ( 5 )  

The temperature of the wall is at a specified con- 
stant value: 

T(r,O) = Tw (6) 

(b) At the liquid-vapor interface, 

z = 6  

The radial velocity vanishes: 

u(r,6) = 0 (7) 

The normal velocity has some constant value depen- 
dent on both momentum and energy considerations, 
and the surface is at the saturation temperature: 

w(r,6) = w6 = constant 

T(r,6) = Ts ( 8 )  

Since the bulk liquid is assumed to be at the satu- 
ration temperature Ts, no heat is conducted into 
the bulk liquid. The momentum and energy equations 
are coupled at the interface by a balance of latent 
heat release and heat conduction through the vapor 
film to the evaporating surface: 

(9 )  

A static force balance requires that the average 
pressure of the vapor over the annular interface be 
equal to the system pressure P, at the flat por- 
tion of the liquid-vapor interface, 88 shown in Fig- 
ure 1: 

P(r,G)r dr = YIP (R2 - R 2 )  (10) 2n a," s o  1 

One further assumption is d e  about the pressure 
field in the next section to make the problem de- 
terminate. 

(c) Also, from radial symmetry, 

U(Rg 'Z )  = 0 (11) 

MGPHOD OF SOLUTION 

A solution flow chart of the entire analysis 
is presented in Figure 2. lhis chart contains the 
overall logic of the analysis and depicts how each 
subproblem ties in with the final results. Refer- 
ence to this chart after reading each subproblem 
section will aid in understanding the analysis. 

Stream Function 

The two-dimensional axisymmetric equations of 
motion with inertia terms neglected, often referred 
to as the "creeping motion" equations, are handled 
most easily by use of the stream function JI de- 
fined by 

(12) 

The continuity equation is identically satisfied by 
these definitions. The momentum equations become 

E4$ = 0 (14) 

where E' is the operator 

Solving Equation (14) for this problem, by 
separation of variables, results in 

Substituting Jr into Equations (12) and (13) 
and applying the boundary conditions (Eqs. (51, 
(7), and (8)) result in the following expressions 
for the velocity components: 

(17) 

where p is a real number and, at this point, 
completely arbitrary. 

Pressure Function 

The velocity expressions (Eqs. (17) and (18)) 
C8n be Substituted into the Navier-Stokes equations 
to obtain 

?t! p2(2z - 6 )  (19) 
gc 

I 



These expressions can be integrated,  subject t o  
the boundary condition 

t o  yield as a f i n a l  expression f o r  the pressure 

2 
+ + (22 - 62) (22) 

R 1  gc 

A derivation of Equation (21) appears i n  [11. 
It suff ices  t o  say t h a t  the pressure i n  the dome is 
s l igh t ly  less than the pressure Ps at the liquid- 
vapor interface.  This difference is  due t o  the  
difference i n  s t a t i c  head corrected f o r  surface 
tension and curvature. 

pressure function (Eq. (22)) i s  inserted i n t o  the 
force balance (Eq. (9 ) ) ,  which when integrated 
gives 

I n  order t o  determine t h e  constant pa, the  

2 p = -  
1 - f 4  : (1 ; f q 2  +Inf 

8 2 

where f = R /%. A cr i ter ion f o r  evaluating p0 
and R 1  w i d  be postulated i n  the  optimum config- 
uration section. 

One of t he  main resul ts  of t h i s  analysis i s  
t h a t  there  i s  a unique relat ion between the r a t e  
of evaporation necessary t o  support the l iquid and 
the  thickness of the gap. This re la t ion is  ob- 
tained by subst i tut ing z = 6 in to  Equation (17): 

Integrating Equation . . - 
ary conditions of f ixed temperatures TW and TS 
at  both the w a l l  and the  interface,  respectively, 
y i e lds  t h e  general solution (as different ia t ion 
w i l l  verify) 

1 2 3  2 B 6  (24) 

(4) sub.iect t o  the bound- 

where x and y are dunmIy variables. 

combining Equations (9) ,  (24), and the f i r s t  deriv- 
ative of Equation (25) evduated at 

The interface energy balance is  obtained by 

z = 6 :  

Substi tuting f o r  w from Equation (17), expanding 
the exponential fbnction, integrating each tern, 
neglecting terms of order €i8 and higher, and 
solving f o r  the gap thickness gives 

Heat-Transfer Coefficient 

Once the gap thickness is  known, it is a rela- 
t i ve ly  simple matter t o  compute the  heat-transfer 
coefficient,  which is defined by 

where h, i s  the loca l  heat-transfer coeff ic ient  
based on the  annular area surrounding the  dome. 
The heat-transfer coefficient of i n t e re s t ,  however, 
is based on the t o t a l  area of the plate.  If heat 
t r ans fe r  i n  the  dome i t s e l f  is neglected, then 
hcell ,  the  heat-transfer coeff ic ient  based on the 
t o t a l  area of a c e l l ,  i s  related t o  harm by 

- hann(l - f2) (29) Aann 
Ace11 

hceli  = h - - 

Employing the f i r s t  derivative of Equation (25) at  
z = 0, Equations (271, (28), and (291, and neglect- 
ing terms of 6' and higher results i n  the  follow- 
ing heat-transfer coefficient:  

where 

This expression f o r  the modified l a t en t  heat of 
vaporization w a s  found by repeated application of 
the binomial theorem, while assuming t h a t  C p / h  
was Small. 

OpmMlM CONFIGURATION OF LIQUID-VAPOR I"ACE 

It w i l l  be shown i n  this section t h a t  there  
i s  an upper l imi t  t o  t h e  r a t e  of heat t r ans fe r  t o  
a un i t  cel l ;  t ha t  is, there  exist "optimum" values 
(from the point of v i e w  of maximum heat transport)  
of the radii Eb and R1, because very large 
c e l l s  and very s m a l l  c e l l s  are  incapable of maxi- 
mizing the heat transport. The heat transport  t o  
the en t i r e  system w i l l  be maximized if 
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and 

(These expressions were checked t o  insure t h a t  they 
d id  not lead t o  a minimum o r  a saddle point. ) Con- 
s ider  Equation (33) f i r s t .  
of p2, given by Equation (23), with respect t o  %, 
se t t ing  t h i s  equal t o  zero, and solving f o r  FQ 
yie ld  

Taking the  derivative 

By subst i tut ing t h e  value of F@ (Eq. (34)) 
i n t o  the  expression f o r  62 (Eq. (23) )  the  heat- 
t ransfer  coefficient given by Equation (30) becomes 

r 

where 

The derivative of heelL with respect t o  f ,  
which w a s  indicated by Equation ( 3 2 ) ,  gives a com- 
pl icated transcendental equation f o r  the optimum 
&ue of f. 
imum value of bell numerically. The optimum 
value w a s  found numerically t o  be 

It is much simpler t o  obtain the  m a x -  

fopt = 0.673 (37 1 
Thus, i f  Equation (37) is  substituted in to  Equa- 
t ion  ( 3 5 ) ,  the  m a x i m u m  value of the  heat-transfer 
coefficient consistent with t h e  proposed model i s  

The optimum ce l l  radius from Equation (34) is 

and the  optimum 

while the  value 

I n  t h e  top  view of the  ce l lu la r  model (Fig. 
l ( a ) ) ,  small curved triangular regions exist on the  
p la te  t h a t  were not compensated f o r  i n  the  analy- 
s i s .  These curved triangular patches must be taken 
i n t o  account i n  order t o  evaluate the  total  heat- 
t ransfer  rate. Since there  are s i x  t r iangular  
patches i n  contact with a s ingle  c e l l  and three 
c e l l s  bordering each patch, the additional area 
a t t r ibu ted  t o  a s ingle  c e l l  i s  twice the area of a 
t r iangular  patch. Drawing an equi la teral  t r iangle  
through the centers of three adjacent c e l l s  and 
evaluating t h e  areas of the  enclosed circular  seg- 
ments readi ly  shows t h a t  t h e  area of the  t r iangular  
patch AA i s  given by 

A n =  %($ - ;) 
The assumption is made t h a t  the  local  heat-transfer 
coeff ic ient  i n  the t r iangular  patch region is the  
same as t h e  heat- t ransfer  coeff ic ient  i n  the  annu- 
lar  region surrounding a vapor dome. This assump- 
t ion  is based on the  fac t  t h a t  the  f i l m  thickness 
under t h e  t r iangular  patch w i l l  be equal t o  t h e  
film thickness under the  annular area. Therefore, 

Solving Equation (43) f o r  htot and combining the  
resu l t  with Equations (29) and (42) yield 

The area r a t i o s  are evaluated from Equations (37) 
and (42) ; consequently, the  heat- t ransfer  coef- 
f i c i e n t  (Eq. (38)) corrected f o r  the  t r iangular  
patches becomes 

COMPARISON OF THEoI(ETIC& AND RFsuLTS 

Equation (45) is ident ica l  i n  form t o  an ex- 
perimentally confirmed expression proposed by Ber- 
enson [11. 
results are the  value of the  prefactor Constant 
and t h e  def in i t ion  of the  modified l a t e n t  heat  O f  
vaporization, but  t h e  lower value of t h e  prefactor 
constant i n  t h e  present results is  compensated for  
by a higher modified l a t e n t  heat, as shown i n  the  
following table:  

me only differences between the  two 

I Parameter ~~ 1 Berenson [ l ]  !Present resul ts!  
I I I I 

Rn = 3.64 2 
Prefactor constant 0.425 0.410 

( 3 9 )  I 
. I  

Modified l a t e n t  
heat  of vapori- /.(I + 0.5 y ) I h ( l  + y) I 
zation 

dome radius from Equation (37) i s  

R1 = 2.45 1 

Of 82 is 

(40) 
I I I 

In  Berenson's work, an empirical expression 
Used f o r  t h e  diameter of the  dome. From a 

series of high-speed motion pictures  of f i l m  
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. boiling of n-pentane and carbon tetrachloride,  the 
diameters of the vapor domes t h a t  had ju s t  departed 
o r  were ju s t  about t o  depart were measured at  var- 
ious heat fluxes. This character is t ic  dome diam- 
e t e r  was correlated by the equation 

DB = 4.7 [.y.]’’” % 10 percent (46) 

This value is very close t o  the optimum vapor dome 
diameter given by Equation (40); namely, 

DISCUSSION OF RESULTS 

The formulation of the film boiling process i n  
terms of a maximization pr inciple  used herein i s  a 
specif ic  instance of what i s  called a “generalized 
optimal boundary value process.” 
recent work [41 has formulated a very general 
statement of t h i s  kind of problem. 
all boundary value problems can be looked upon as 
control problems. 
controls. 
s e l ec t  from all admissible boundary conditions a 
s e t  f o r  which some functional assumes an extreme 
(maximum o r  minimum) value. It is t o  be emphasized 
t h a t  the shape of the boundary is a boundary condi- 
t ion.  Apparently, cer ta in  kinds of physical s i tua-  
t ions are naturally optimal boundary value proces- 
ses. Krzywoblocki [41 gives some examples of t h i s  
natural  c lass  of optimal o r  extremum processes, one 
of them being the  dynamics of a l iquid enclosed i n  
a par t ly  f i l l e d  tank under conditions of zero 
gravity. Here, t he  unknown boundary conditions 
(dis t r ibut ion of vapor and l iquid)  can be deter-  
mined s t a t i s t i c a l l y  by a var ia t ional  principle.  

l i qu id  boundary i s  f lexible ,  it is  conceptually 
possible f o r  t h e  vapor l iquid boundary t o  adjust  
i t s e l f  t o  maximize heat transfer.  In  terms of the 
foregoing nomenclature, a generalized postulate on 
f i l m  boil ing is proposed: Film boiling on a hori-  
zontal surface i s  an optimal boundary value process 
where the functional t o  be maximized is the t o t a l  
rate of heat t ransfer .  
f igurat ions of t h e  vapor-liquid interface,  t ha t  one 
which maximizes the energy transport  is realized. 

The f i n a l  j u s t i f i ca t ion  f o r  t he  postulate i s  
t h a t  results employing it are consistent with ex- 
perimental data,  as shorn i n  the preceding section 
of t h i s  report;  however, the appl icabi l i ty  of a 
m a x i m u m  pr inciple  may even transcend this particu- 
lar application t o  fi lm boiling. In  151 f o r  ex- 
ample, Malkus advanced a novel theory on the nature 
of turbulent free convection. He proposed t h a t  i n  
thermal turbulence the  flow adjusts  itself i n  such 
a w a y  as t o  transfer the  maximum amount of heat 
compatible with the  boundary conditions. 
introducing experimental constants, a reasonably 
accurate prediction of the m e a n  velocity dis t r ibu-  
t ion for the turbulent  f l o w  w a s  achieved. Other 
papers by M a l k u s  [6 and 71 which t r e a t  f i n i t e -  
amplitude c e l l u l a r  convection and a theory of shear 
turbulence, respectively,  a l so  employ a maximiza- 
t i o n  postulate.  I n  addition, Zuber E81 has taken 
the Malkus theory of turbulent free convection as a 
basis  f o r  a general  model of nucleate boiling. 

Krzywoblocki i n  a 

In  other words, 

The boundary conditions are the 
The optimal boundary value problem i s  t o  

I n  the  f i lm boi l ing problem, since the  vapor- 

Of aii the p ~ ~ s i 5 l e  ax- 

Without 

In the  analysis it w a s  t a c t i l y  assumed tha t  
The follow- f i lm boiling was f u l l y  established. 

ing question may arise: 
a much more e f f i c i en t  process than f i l m  boil ing and 
if  nature i s  attempting t o  maximize the  heat trans- 
fer, why is  the  heat-transfer rate degraded at some 
c r i t i c a l  temperature difference (burnout) ? 
ently,  these c r i t i c a l  t r ans i t i on  points must be 
looked upon as constraints. 
physical properties with temperature and pressure 
are thermodynamic constraints t h a t  a l w a y s  exist .  
Two examples i l l u s t r a t i n g  how thermodynamic con- 
s t r a i n t s  determine what heat-transfer regime w i l l  
ex i s t  are as follows: 

since nucleate boiling i s  

Appar- 

The variations of 

(a) Above a cer ta in  w a l l  temperature a 
l iquid may be unable t o  w e t  t he  wall, which 
makes nucleate boiling impossible. 

(b) Above the  thermodynamic c r i t i c a l  pres- 
sure of a f lu id ,  no boiling can occur. 
If Zuber’s theory [81 of boil ing with the use 

of the Malkus model of turbulent f r e e  convection i s  
correct, then a general statement on boiling pro- 
cesses can be formulated: Boiling heat transfer, 
both nucleate and film, is an attempt by nature t o  
maximize the  rate of heat t r ans fe r  i n t o  t h e  system, 
subject t o  the  general constraints imposed by ther- 
modynamics and hydrodynamics. 

Which regime of boiling, nucleate o r  film, 
actually obtains i n  a given s i tuat ion cannot be 
predicted from such a general postulate, but must 
be regarded as calculable f r o m  t h e  general con- 
s t r a in t s  which are operating. However, given a 
regime and a choice among many al ternat ives  ( tur-  
bulence, c e l l  dis t r ibut ion,  e tc . ) ,  nature wi l l  home 
i n  on t h a t  s t a t e  of t he  system which maximizes the 
energy transport. 

On a philosophical basis ,  why is  nature so 
obliging i n  maximizing the  rate of heat t ransfer?  
The explanation lies i n  entropy considerations. 
essence, everything said about maximizing the  
energy transfer can be recast  i n  terms of an en- 
tropy production; t h a t  is, i f  the rate of heat 
t ransfer  i s  being maximized, t he  rate of entropy 
production is also being maximized. 
w a l l  is considered a heat reservoir a t  temperature 
Tw 
temperature T,, t he  rate of entropy production of 
the universe i s  then 

I n  

If the hot 

and the bulk f l u i d  i s  considered a heat sink at 

d S Q Q  
d t  - T, Tw 

where Q is the t o t a l  r a t e  of heat t r ans fe r  from 
the w a l l .  Clearly, f o r  fixed Tw and Ts, t he  
ra te  of entropy production of t he  universe w i l l  be 
a maximum i f  the heat transport  is a maximum. 

probably comprehend more physical s i tuat ions than 
the energy formulation. The generalization t h a t  
suggests i t s e l f ,  then, i s  t h a t  i n  all chaotic-type 
situations the average behavior of t he  system is  
such t h a t  the entropy production is maximized. 
W s  generalization is  the macroscopic analog of 
the Second Law of Thermodynamics. Clearly, the i m -  
portance of t h i s  nonequilibrium thermodynamic pos- 
tulate is obvious, and i ts  general val idi ty  w a r -  
rants fur ther  study and investigation. 

The entropy formulation is  more basic and w i l l  

CONCLUSIONS 

A theoret ical  analysis of pool fi lm boiling 
from a horizontal surface yielded the following: 
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1. A theoret ical  expression f o r  the heat- 
t r ans fe r  coeff ic ient  t h a t  agrees within 
4 percent of an experimentally confirmed ex- 
pression proposed by Berenson 

radius t h a t  agrees within 5 percent of ex- 
perimentally observed breakoff diameters 

3. ~n optimum cell diameter (wavelength) which 
is intermediate between the  c r i t i c a l  and the 
most dangerous wavelength predicted by one- 
dimensional small-amplitude hydrodynamic 
s t a b i l i t y  theory 

2. An optimum average vapor dane (bubble) 

In add i t im ,  a tentat ive nonequilibrium ther-  
modynamic hypothesis w a s  proposed which states t h a t  
nature maximizes t he  r a t e  of entropy production i n  
a l l  systems characterized by macroscopic chaos, 
such as turbulence, nucleate boiling, and f i l m  
boiling. 

arbi t rary constants 

areas of annular cell region, s q  cm 
area of ce l l ,  sq cm 
area of curved triangular patch, s q  cm 
a rb i t r a ry  constants 
vapor specif ic  heat at constant pressure, 

breakoff diameter of vapor dome, cm 
diameter of cell, cm 
diameter of vapor dome, cm 

d i f f e ren t i a l  operator defined by Eq. (15) 
r a t i o  of vapor dome t o  c e l l  radius, R ~ / %  
loca l  d u e  of gravity,  cm/sec2 
conversion factor  i n  Newton's l a w  of 

motion, 1. o g-cm/(sec') (dyne) 
heat-transfer coefficient based on annu- 

lar area, ca l l (  sq cm) (sec) (OK)  
heat-transfer coeff ic ient  based on c e l l  

area, c d / ( s q  cm)(sec)(%) 
heat-transfer coefficient based on t o t a l  

p l a t e  area, c d / ( s q  cm)(sec)(%) 
vapor thermal conductivity, cal/(cm) (sec) 

character is t ic  length given by Eq. (36), 

absolute pressure, dyne/sq cm 
pressure of EyStem, dyne/sq cm 
r a t e  of heat t ransfer ,  cal/sec 
t o t a l  rate of heat t r ans fe r  f r o m  plate ,  

radius of c e l l ,  cm 
rad ius  of vapor dome, c m  
radial  coordinate, cm 
entropy, c d p K  
temperature, % 
Tw - Ts, 
saturation temperature, OK 
w a l l  temperature, 9( 

radial velocity, cm/sec 
a x i d  velocity, cm/sec 
evaporation velocity, cm/sec 
dunuuy variable, cm 
d u n q  variable, cm 
ax ia l  coordinate, cm 

cal / (g)(W 

( % 
cm 

cal/sec 

thermal diffusivi ty ,  k/pCp, cm/sec2 
constant given by Eq. (41), l / ( s q  cm)(sec) 
thickness of vapor film, cm 
l a t en t  heat of vaporization, cal/g 
modified l a t en t  heat of vaporization, cal/g 
vapor viscosity,  g/( cm) (sec) 
vapor density, g/cu cm 
l i qu id  density, g/cu cm 

+ 

a surface tension, me /cm 
~r stream function, cu cm/sec 
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(a) Top view: Showing symmetrical distribution of cells 
on surface. 

I H o t  wall 

:E Side vk:k ShcAng rlirertinr! n! vapor flow into domes, 
axial coordinate z, radial coordinate r, cell radius Rg 
dome radius RE and gap thickness 6. 

Figure 1. - Idealized cellular model for film boiling on horizontal surface. 
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